Synthesize tabular data
Using DRAGAN to generate tabular synthetic data:
Real-world domains are often described by tabular data i.e., data that can be structured and organized in a table-like format, where features/variables are represented in columns, whereas observations correspond to the rows.
DRAGAN is a GAN variant that uses a gradient penalty to improve training stability and mitigate mode collapse:
- 📑 Paper: On Convergence and Stability of GANs
Here’s an example of how to synthetize tabular data with DRAGAN using the Adult Census Income dataset:
from pmlb import fetch_data
from ydata_synthetic.synthesizers.regular import RegularSynthesizer
from ydata_synthetic.synthesizers import ModelParameters, TrainParameters
#Load data and define the data processor parameters
data = fetch_data('adult')
num_cols = ['age', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-per-week']
cat_cols = ['workclass','education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex',
'native-country', 'target']
# DRAGAN training
#Defining the training parameters of DRAGAN
noise_dim = 128
dim = 128
batch_size = 500
log_step = 100
epochs = 500+1
learning_rate = 1e-5
beta_1 = 0.5
beta_2 = 0.9
models_dir = '../cache'
gan_args = ModelParameters(batch_size=batch_size,
lr=learning_rate,
betas=(beta_1, beta_2),
noise_dim=noise_dim,
layers_dim=dim)
train_args = TrainParameters(epochs=epochs,
sample_interval=log_step)
synth = RegularSynthesizer(modelname='dragan', model_parameters=gan_args, n_discriminator=3)
synth.fit(data = data, train_arguments = train_args, num_cols = num_cols, cat_cols = cat_cols)
synth.save('adult_dragan_model.pkl')
#########################################################
# Loading and sampling from a trained synthesizer #
#########################################################
synthesizer = RegularSynthesizer.load('adult_dragan_model.pkl')
synthesizer.sample(1000)