Synthesize tabular data
Using WGAN-GP to generate tabular synthetic data:
Real-world domains are often described by tabular data i.e., data that can be structured and organized in a table-like format, where features/variables are represented in columns, whereas observations correspond to the rows.
WGANGP is a variant of GAN that incorporates a gradient penalty term to enhance training stability and improve the diversity of generated samples:
- 📑 Paper: Improved Training of Wasserstein GANs
Here’s an example of how to synthetize tabular data with WGAN-GP using the Adult Census Income dataset:
from pmlb import fetch_data
from ydata_synthetic.synthesizers.regular import RegularSynthesizer
from ydata_synthetic.synthesizers import ModelParameters, TrainParameters
#Load data and define the data processor parameters
data = fetch_data('adult')
num_cols = ['age', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-per-week']
cat_cols = ['workclass','education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex',
'native-country', 'target']
#Defining the training parameters
noise_dim = 128
dim = 128
batch_size = 500
log_step = 100
epochs = 500+1
learning_rate = [5e-4, 3e-3]
beta_1 = 0.5
beta_2 = 0.9
models_dir = '../cache'
gan_args = ModelParameters(batch_size=batch_size,
lr=learning_rate,
betas=(beta_1, beta_2),
noise_dim=noise_dim,
layers_dim=dim)
train_args = TrainParameters(epochs=epochs,
sample_interval=log_step)
synth = RegularSynthesizer(modelname='wgangp', model_parameters=gan_args, n_critic=2)
synth.fit(data, train_args, num_cols, cat_cols)
synth.save('adult_wgangp_model.pkl')
#########################################################
# Loading and sampling from a trained synthesizer #
#########################################################
synth = RegularSynthesizer.load('adult_wgangp_model.pkl')
synth_data = synth.sample(1000)