WGAN_GP
Bases: BaseGANModel
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
c_lossfn(real)
Compute critic loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real |
real data |
required |
Returns:
Type | Description |
---|---|
critic loss |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
define_gan(activation_info=None)
Define the trainable model components.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
activation_info |
Optional[NamedTuple]
|
Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
(generator_optimizer, critic_optimizer)
|
Generator and critic optimizers. |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
fit(data, train_arguments, num_cols, cat_cols)
Fit a synthesizer model to a given input dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
A pandas DataFrame or a Numpy array with the data to be synthesized. |
required | |
train_arguments |
TrainParameters
|
GAN training arguments. |
required |
num_cols |
List[str]
|
List of columns of the data object to be handled as numerical. |
required |
cat_cols |
List[str]
|
List of columns of the data object to be handled as categorical. |
required |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
g_lossfn(real)
Compute generator loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real |
A real sample |
required | |
fake |
A fake sample |
required | |
fak2 |
A second fake sample |
required |
Returns:
Type | Description |
---|---|
Loss of the generator |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
get_data_batch(train, batch_size, seed=0)
Get real data batches from the passed data object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train |
real data. |
required | |
batch_size |
batch size. |
required | |
seed |
int
|
Defaults to 0. |
0
|
Returns:
Type | Description |
---|---|
data batch. |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
gradient_penalty(real, fake)
Compute gradient penalty.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real |
real event. |
required | |
fake |
fake event. |
required |
Returns:
Type | Description |
---|---|
gradient_penalty. |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
train_step(train_data, optimizers)
Perform a training step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data |
training data |
required | |
optimizers |
generator and critic optimizers |
required |
Returns:
Type | Description |
---|---|
(critic_loss, generator_loss)
|
Critic and generator loss. |
Source code in /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/ydata_synthetic/synthesizers/regular/wgangp/model.py
update_gradients(x, g_optimizer, c_optimizer)
Compute and apply the gradients for both the Generator and the Critic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
real data event |
required | |
g_optimizer |
generator optimizer |
required | |
c_optimizer |
critic optimizer |
required |
Returns:
Type | Description |
---|---|
(critic loss, generator loss) |