CWGANGP
Bases: ConditionalModel
, WGAN_GP
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
__init__(model_parameters, n_generator=1, n_critic=1, gradient_penalty_weight=10)
Adapts the WGAN_GP synthesizer implementation to be conditional.
Several conditional WGAN implementations can be found online, here are a few: https://cameronfabbri.github.io/papers/conditionalWGAN.pdf https://www.sciencedirect.com/science/article/abs/pii/S0020025519309715 https://arxiv.org/pdf/2008.09202.pdf
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
c_lossfn(real)
Compute the critic loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real |
A real sample |
required |
Returns:
Type | Description |
---|---|
Critic loss |
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
define_gan(activation_info=None)
Define the trainable model components.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
activation_info |
Optional[NamedTuple]
|
Defaults to None |
None
|
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
fit(data, label_cols, train_arguments, num_cols, cat_cols)
Train the synthesizer on a provided dataset based on a specified condition column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
A pandas DataFrame with the data to be synthesized |
required |
label |
The name of the column to be used as a label and condition for the training |
required | |
train_arguments |
TrainParameters
|
GAN training arguments. |
required |
num_cols |
List[str]
|
List of columns of the data object to be handled as numerical |
required |
cat_cols |
List[str]
|
List of columns of the data object to be handled as categorical |
required |
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
g_lossfn(real)
Forward pass on the generator and computes the loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real |
Data batch we are analyzing |
required |
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
get_data_batch(data, batch_size, seed=0)
staticmethod
Produce real data batches from the passed data object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train |
real data. |
required | |
batch_size |
batch size. |
required | |
seed |
int
|
Defaults to 0. |
0
|
Returns:
Type | Description |
---|---|
data batch. |
Source code in ydata_synthetic/synthesizers/regular/cwgangp/model.py
gradient_penalty(real, fake, label)
Compute gradient penalty.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real |
real event. |
required | |
fake |
fake event. |
required | |
label |
ground truth. |
required |